Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
1.
Chinese Journal of Biotechnology ; (12): 2772-2793, 2023.
Article in Chinese | WPRIM | ID: wpr-981232

ABSTRACT

Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.


Subject(s)
Ipomoea batatas/metabolism , Arabidopsis/metabolism , Sucrose/metabolism , Saccharomyces cerevisiae/metabolism , DNA, Complementary , Phylogeny , Plants, Genetically Modified/genetics , Membrane Transport Proteins/metabolism , Starch/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
Chinese Journal of Biotechnology ; (12): 2762-2771, 2023.
Article in Chinese | WPRIM | ID: wpr-981231

ABSTRACT

Galactinol synthase (GolS) genes play important roles in plant response to abiotic stress. In this research, the plant expression vector of soybean GmGolS2-2 gene was constructed and transformed into tobacco to study the drought tolerance of transgenic tobacco. A GmGolS2-2 gene with 975 bp coding sequence was cloned from soybean leaves by reverse transcription-polymerase chain reaction (RT-PCR). GmGolS2-2 was linked to the plant expression vector pRI101 by restriction enzyme sites Nde Ⅰ and EcoR Ⅰ, and transformed into tobacco by leaf disc method. Genomic DNA PCR and real-time PCR showed that three GmGolS2-2 transgenic tobacco plants were obtained. The growth status of GmGolS2-2 transgenic tobacco under drought stress was better than that of wild-type tobacco. After drought stress treatment, the electrolyte leakage and malondialdehyde content of transgenic tobacco were lower than those of wild-type tobacco, but the proline content and soluble sugar content were higher than those of wild-type tobacco. The results of real-time PCR showed that the heterologous expression of GmGolS2-2 increased the expression of stress-related genes NtERD10C and NtAQP1 in transgenic tobacco. The above results indicated that GmGolS2-2 improved drought resistance of transgenic tobacco.


Subject(s)
Drought Resistance , Tobacco/genetics , Soybeans/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Droughts , Gene Expression Regulation, Plant
3.
Chinese Journal of Biotechnology ; (12): 2600-2611, 2023.
Article in Chinese | WPRIM | ID: wpr-981218

ABSTRACT

High salt content in soils severely hampers plant growth and crop yields. Many transcription factors in plants play important roles in responding to various stresses, but their molecular mechanisms remain unclear. WRKY transcription factors are one of the largest families of transcription factors in higher plants that are involved in and influence many aspects of plant growth and development. They play important roles in responding to salt stress. The regulation of gene expression by WRKY proteins is mainly achieved by binding to the DNA's specific cis-regulatory elements, the W-box elements (TTGACC). In recent years, there have been many studies revealing the roles and mechanisms of WRKY family members, from model plant Arabidopsis to agricultural crops. This paper reviews the latest research progress on WRKY transcription factors in response to salt stress and discusses the current challenges and future perspectives of WRKY transcription factor research.


Subject(s)
Transcription Factors/metabolism , Plant Proteins/metabolism , Stress, Physiological/genetics , Salt Stress/genetics , Crops, Agricultural/genetics , Gene Expression Regulation, Plant , Phylogeny , Plants, Genetically Modified/genetics
4.
Braz. j. biol ; 83: e246436, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1339391

ABSTRACT

Abstract Application of different fertilizers to check the efficiency of expression of Bt (Bacillus thuringiensis) gene in one of the leading commercialized crops (cotton) against Lepidopteran species is of great concern. The expression of Cry protein level can be controlled by the improvement of nutrients levels. Therefore, the myth of response of Cry toxin to different combinations of NP fertilizers was explored in three Bt cotton cultivars. Combinations include three levels of nitrogen and three levels of phosphorus fertilizers. Immunostrips and Cry gene(s) specific primer based PCR (Polymerase Chain Reaction) analysis were used for the presence of Bt gene that unveiled the presence of Cry1Ac gene only. Further, the ELISA (enzyme-linked immunosorbent assay) kit was used to quantify the expression of Cry1Ac protein. Under various NP fertilizers rates, the level of toxin protein exhibited highly significant differences. The highest toxin level mean was found to be 2.3740 and 2.1732 µg/g under the treatment of N150P75 kg ha-1 combination while the lowest toxin level mean was found to be 0.9158 and 0.7641 µg/g at the N50P25 kg ha-1 level at 80 and 120 DAS (Days After Sowing), respectively. It was concluded from the research that the usage of NP fertilizers has a positive relation with the expression of Cry1Ac toxin in Bt cotton. We recommend using the N150P50 kg ha-1 level as the most economical and practicable fertilizer instead of the standard dose N100P50 kg ha-1 to get the desired level of Cry1Ac level for long lasting plant resistance (<1.5). The revised dose of fertilizer may help farmers to avoid the cross-resistance development in contradiction of insect pests.


Resumo A aplicação de diferentes fertilizantes para verificar a eficiência da expressão do gene Bt (Bacillus thuringiensis) em uma das principais culturas comercializadas (algodão) contra espécies de lepidópteros é uma grande preocupação. A expressão do nível de proteína Cry pode ser controlada pela melhoria dos níveis de nutrientes. Portanto, o mito da resposta da toxina Cry a diferentes combinações de fertilizantes NP foi explorado em três cultivares de algodão Bt. As combinações incluem três níveis de nitrogênio e três níveis de fertilizantes de fósforo. A análise de PCR (reação em cadeia da polimerase) específica para o gene (s) Immunostrips e Cry (s) foi usada para a presença do gene Bt que revelou a presença do gene Cry1Ac apenas. Além disso, o kit ELISA (ensaio de imunoabsorção enzimática) foi usado para quantificar a expressão da proteína Cry1Ac. Sob várias taxas de fertilizantes NP, o nível de proteína de toxina exibiu diferenças altamente significativas. A média do nível mais alto de toxina foi de 2,3740 e 2,1732 µg / g sob o tratamento da combinação N150P75 kg ha-1, enquanto a média do nível mais baixo de toxina foi de 0,9158 e 0,7641 µg / g no nível de N50P25 kg ha-1 em 80 e 120 DAS (dias após a semeadura), respectivamente. Concluiu-se com a pesquisa que o uso de fertilizantes NP tem relação positiva com a expressão da toxina Cry1Ac no algodão Bt. Recomendamos o uso do nível de N150P50 kg ha-1 como o fertilizante mais econômico e praticável em vez da dose padrão N100P50 kg ha-1 para obter o nível desejado de nível de Cry1Ac para resistência de planta de longa duração (<1,5). A dose revisada de fertilizante pode ajudar os agricultores a evitar o desenvolvimento de resistência cruzada em contradição com as pragas de insetos.


Subject(s)
Animals , Hemolysin Proteins/genetics , Moths , Phosphorus , Bacterial Proteins/genetics , Insecticide Resistance , Plants, Genetically Modified/genetics , Endotoxins/genetics , Fertilizers , Bacillus thuringiensis Toxins , Larva , Nitrogen
5.
Braz. j. biol ; 83: e245379, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1339405

ABSTRACT

Abstract Population growth is increasing rapidly around the world, in these consequences we need to produce more foods to full fill the demand of increased population. The world is facing global warming due to urbanizations and industrialization and in this concerns plants exposed continuously to abiotic stresses which is a major cause of crop hammering every year. Abiotic stresses consist of Drought, Salt, Heat, Cold, Oxidative and Metal toxicity which damage the crop yield continuously. Drought and salinity stress severally affected in similar manner to plant and the leading cause of reduction in crop yield. Plants respond to various stimuli under abiotic or biotic stress condition and express certain genes either structural or regulatory genes which maintain the plant integrity. The regulatory genes primarily the transcription factors that exert their activity by binding to certain cis DNA elements and consequently either up regulated or down regulate to target expression. These transcription factors are known as masters regulators because its single transcript regulate more than one gene, in this context the regulon word is fascinating more in compass of transcription factors. Progress has been made to better understand about effect of regulons (AREB/ABF, DREB, MYB, and NAC) under abiotic stresses and a number of regulons reported for stress responsive and used as a better transgenic tool of Arabidopsis and Rice.


Resumo O crescimento populacional está aumentando rapidamente em todo o mundo, e para combater suas consequências precisamos produzir mais alimentos para suprir a demanda do aumento populacional. O mundo está enfrentando o aquecimento global devido à urbanização e industrialização e, nesse caso, plantas expostas continuamente a estresses abióticos, que é uma das principais causas do martelamento das safras todos os anos. Estresses abióticos consistem em seca, sal, calor, frio, oxidação e toxicidade de metais que prejudicam o rendimento da colheita continuamente. A seca e o estresse salino são afetados de maneira diversa pela planta e são a principal causa de redução da produtividade das culturas. As plantas respondem a vários estímulos sob condições de estresse abiótico ou biótico e expressam certos genes estruturais ou regulatórios que mantêm a integridade da planta. Os genes reguladores são principalmente os fatores de transcrição que exercem sua atividade ligando-se a certos elementos cis do DNA e, consequentemente, são regulados para cima ou para baixo para a expressão alvo. Esses fatores de transcrição são conhecidos como reguladores mestres porque sua única transcrição regula mais de um gene; nesse contexto, a palavra regulon é mais fascinante no âmbito dos fatores de transcrição. Progresso foi feito para entender melhor sobre o efeito dos regulons (AREB / ABF, DREB, MYB e NAC) sob estresses abióticos e uma série de regulons relatados como responsivos ao estresse e usados ​​como uma melhor ferramenta transgênica de Arabidopsis e Rice.


Subject(s)
Regulon/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Droughts
6.
Chinese Journal of Biotechnology ; (12): 603-613, 2023.
Article in Chinese | WPRIM | ID: wpr-970394

ABSTRACT

ACC oxidase (ACO) is one of the key enzymes that catalyze the synthesis of ethylene. Ethylene is involved in salt stress response in plants, and salt stress seriously affects the yield of peanut. In this study, AhACO genes were cloned and their functions were investigated with the aim to explore the biological function of AhACOs in salt stress response, and to provide genetic resources for the breeding of salt-tolerant varieties of peanut. AhACO1 and AhACO2 were amplified from the cDNA of salt-tolerant peanut mutant M29, respectively, and cloned into the plant expression vector pCAMBIA super1300. The recombinant plasmid was transformed into Huayu22 by pollen tube injection mediated by Agrobacterium tumefaciens. After harvest, the small slice cotyledon was separated from the kernel, and the positive seeds were screened by PCR. The expression of AhACO genes was analyzed by qRT-PCR, and the ethylene release was detected by capillary column gas chromatography. Transgenic seeds were sowed and then irrigated with NaCl solution, and the phenotypic changes of 21-day-seedings were recorded. The results showed that the growth of transgenic plants were better than that of the control group Huayu 22 upon salt stress, and the relative content of chlorophyll SPAD value and net photosynthetic rate (Pn) of transgenic peanuts were higher than those of the control group. In addition, the ethylene production of AhACO1 and AhACO2 transgenic plants were 2.79 and 1.87 times higher than that of control peanut, respectively. These results showed that AhACO1 and AhACO2 could significantly improve the salt stress tolerance of transgenic peanut.


Subject(s)
Salt Tolerance/genetics , Arachis/genetics , Plant Breeding , Ethylenes/metabolism , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics
7.
Chinese Journal of Biotechnology ; (12): 446-458, 2023.
Article in Chinese | WPRIM | ID: wpr-970384

ABSTRACT

Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2β anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2β anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.


Subject(s)
Insecticides/metabolism , Bacillus thuringiensis , Endotoxins/pharmacology , Bacillus thuringiensis Toxins/metabolism , Hemolysin Proteins/pharmacology , Bacterial Proteins/chemistry , Plants, Genetically Modified/genetics , Pest Control, Biological
8.
Biol. Res ; 55: 31-31, 2022. ilus, tab, graf
Article in English | LILACS | ID: biblio-1403566

ABSTRACT

Genetic modification of living organisms has been a prosperous activity for research and development of agricultural, industrial and biomedical applications. Three decades have passed since the first genetically modified products, obtained by transgenesis, become available to the market. The regulatory frameworks across the world have not been able to keep up to date with new technologies, monitoring and safety concerns. New genome editing techniques are opening new avenues to genetic modification development and uses, putting pressure on these frameworks. Here we discuss the implications of definitions of living/genetically modified organisms, the evolving genome editing tools to obtain them and how the regulatory frameworks around the world have taken these technologies into account, with a focus on agricultural crops. Finally, we expand this review beyond commercial crops to address living modified organism uses in food industry, biomedical applications and climate change-oriented solutions.


Subject(s)
Crops, Agricultural/genetics , Gene Editing/methods , Biotechnology , Plants, Genetically Modified/genetics , Genome, Plant , Agriculture
9.
Braz. j. biol ; 82: e243692, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278520

ABSTRACT

Vegetables are an important source of income and high-value crops for small farmers. Chilli (Capsicum spp.) is one of the most economically important vegetables of Pakistan and it is grown throughout the country. It is a rich source of nutrition especially vitamins A, B, C and E along with minerals as folic acid, manganese (Mn), potassium (K) and molybdenum (Mo). Chilli possesses seven times more amount of vitamin C than an orange. Vitamin A, C and betacarotenoids are strong antioxidants to scavenge the free radicals. Chilli production is restricted due to various biotic factors. Among these viruses, Chilli veinal mottle virus (ChiVMV) is one of the most destructive and menacing agents that inflicts heavy and colossal losses that accounted for 50% yield loss both in quality and quantity. Pathogen-Derived Resistance (PDR) approach is considered one of the effective approaches to manage plant viruses. In this study, ChiVMV was characterized on a molecular level, the coat protein (CP) gene of the virus was stably transformed into Nicotiana benthamiana plants using Agrobacterium tumefaciens. The transgenic plants were challenged with the virus to evaluate the level of resistance of plants against the virus. It was observed that the plants expressing CP gene have partial resistance against the virus in terms of symptoms' development and virus accumulation. Translation of this technique into elite chilli varieties will be resulted to mitigate the ChiVMV in the crop as well as an economic benefit to the farmers.


Vegetais são uma importante fonte de renda e culturas de alto valor para os pequenos agricultores. A pimenta-malagueta (Capsicum spp.) é uma das hortaliças mais importantes economicamente do Paquistão e é cultivada em todo o país. É uma rica fonte de nutrição, especialmente vitaminas A, B, C e E com minerais como ácido fólico, manganês (Mn), potássio (K) e molibdênio (Mo). O pimentão possui sete vezes mais vitamina C do que a laranja. Vitaminas A e C e betacarotenoides são antioxidantes fortes para eliminar os radicais livres. A produção de pimenta é restrita devido a vários fatores bióticos. Entre esses vírus, o ChiVMV é o agente mais destrutivo e ameaçador que inflige perdas pesadas e colossais que representam 50% da perda de rendimento, tanto em qualidade quanto em quantidade. A abordagem de resistência derivada de patógenos (PDR) é considerada uma das abordagens eficazes para gerenciar os vírus de plantas. Neste estudo, ChiVMV foi caracterizado em nível molecular e o gene CP do vírus foi transformado de forma estável em plantas Nicotiana benthamiana usando Agrobacterium tumefaciens. As plantas transgênicas foram desafiadas com o vírus para avaliar seu nível de resistência contra o vírus. Observou-se que as plantas que expressam o gene CP apresentam resistência parcial ao vírus em termos de desenvolvimento de sintomas e acúmulo de vírus. A tradução dessa técnica em variedades de pimenta de elite resultará na mitigação do ChiVMV na safra, bem como em benefícios econômicos para os agricultores em termos de melhor rendimento e baixo custo de produção.


Subject(s)
Tobacco/genetics , Potyvirus/genetics , Pakistan , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Disease Resistance
10.
Chinese Journal of Biotechnology ; (12): 1946-1952, 2022.
Article in Chinese | WPRIM | ID: wpr-927829

ABSTRACT

In order to improve the salt tolerance of banana NHX genes, we cloned a MaNHX5 gene from Musa acuminata L. AAA group and predicted the key salt-tolerant amino acid sites and mutant protein structure changes of MaNHX5 by using bioinformatics tools. The 276-position serine (S) of MaNHX5 protein was successfully mutated to aspartic acid (D) by site-directed mutagenesis, and the AXT3 salt-sensitive mutant yeast was used for a functional complementation test. The results showed that after the mutated MaNHX5 gene was transferred to AXT3 salt-sensitive mutant yeast, the salt tolerance of the mutant yeast was significantly improved under 200 mmol/L NaCl treatment. It is hypothesized that Ser276 of MaNHX5 protein plays an important role in the transport of Na+ across the tonoplast.


Subject(s)
Amino Acids/metabolism , Gene Expression Regulation, Plant , Musa/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Saccharomyces cerevisiae/metabolism
11.
Chinese Journal of Biotechnology ; (12): 50-65, 2022.
Article in Chinese | WPRIM | ID: wpr-927692

ABSTRACT

Salt stress may cause primary osmotic stress and ion toxicity, as well as secondary oxidative stress and nutritional stress in plants, which hampers the agricultural production. Salt stress-responsive transcription factors can mitigate the damage of salt stress to plants through regulating the expression of downstream target genes. Based on the soil salinization and its damage to plants, and the central regulatory role of transcription factors in the plant salt stress-responsive signal transduction network, this review summarized the salt stress-responsive signal transduction pathways that the transcription factors are involved, and the application of salt stress-responsive transcription factors to enhance the salt tolerance of plants. We also reviewed the transcription factors-regulated complex downstream gene network which is formed by forming homo- or heterodimers between transcription factors and by forming complexes with regulatory proteins. This paper provides a theoretical basis for understanding the role of salt stress-responsive transcription factors in the salt stress regulatory network, which may facilitate the molecular breeding for improved stress resistance.


Subject(s)
Gene Expression Regulation, Plant , Osmotic Pressure , Plant Proteins/metabolism , Plants, Genetically Modified , Salt Stress , Salt Tolerance , Stress, Physiological , Transcription Factors/metabolism
12.
Braz. j. biol ; 82: 1-11, 2022. tab, ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468549

ABSTRACT

Vegetables are an important source of income and high-value crops for small farmers. Chilli (Capsicum spp.) is one of the most economically important vegetables of Pakistan and it is grown throughout the country. It is a rich source of nutrition especially vitamins A, B, C and E along with minerals as folic acid, manganese (Mn), potassium (K) and molybdenum (Mo). Chilli possesses seven times more amount of vitamin C than an orange. Vitamin A, C and beta carotenoids are strong antioxidants to scavenge the free radicals. Chilli production is restricted due to various biotic factors. Among these viruses, Chilli veinal mottle virus (ChiVMV) is one of the most destructive and menacing agents that inflicts heavy and colossal losses that accounted for 50% yield loss both in quality and quantity. Pathogen-Derived Resistance (PDR) approach is considered one of the effective approaches to manage plant viruses. In this study, ChiVMV was characterized on a molecular level, the coat protein (CP) gene of the virus was stably transformed into Nicotiana benthamiana plants using Agrobacterium tumefaciens. The transgenic plants were challenged with the virus to evaluate the level of resistance of plants against the virus. It was observed that the plants expressing CP gene have partial resistance against the virus in terms of symptoms' development and virus accumulation. Translation of this technique into elite chilli varieties will be resulted to mitigate the ChiVMV in the crop as well as an economic benefit to the farmers.


Vegetais são uma importante fonte de renda e culturas de alto valor para os pequenos agricultores. A pimenta-malagueta (Capsicum spp.) é uma das hortaliças mais importantes economicamente do Paquistão e é cultivada em todo o país. É uma rica fonte de nutrição, especialmente vitaminas A, B, C e E com minerais como ácido fólico, manganês (Mn), potássio (K) e molibdênio (Mo). O pimentão possui sete vezes mais vitamina C do que a laranja. Vitaminas A e C e betacarotenoides são antioxidantes fortes para eliminar os radicais livres. A produção de pimenta é restrita devido a vários fatores bióticos. Entre esses vírus, o ChiVMV é o agente mais destrutivo e ameaçador que inflige perdas pesadas e colossais que representam 50% da perda de rendimento, tanto em qualidade quanto em quantidade. A abordagem de resistência derivada de patógenos (PDR) é considerada uma das abordagens eficazes para gerenciar os vírus de plantas. Neste estudo, ChiVMV foi caracterizado em nível molecular e o gene CP do vírus foi transformado de forma estável em plantas Nicotiana benthamiana usando Agrobacterium tumefaciens. As plantas transgênicas foram desafiadas com o vírus para avaliar seu nível de resistência contra o vírus. Observou-se que as plantas que expressam o gene CP apresentam resistência parcial ao vírus em termos de desenvolvimento de sintomas e acúmulo de vírus. A tradução dessa técnica em variedades de pimenta de elite resultará na mitigação do ChiVMV na safra, bem como em benefícios econômicos para os agricultores em termos de melhor rendimento e baixo custo de produção.


Subject(s)
Capsicum/virology , Drug Resistance, Viral , Plants, Genetically Modified , Tobacco/genetics
13.
Electron. j. biotechnol ; 51: 95-109, May. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1343466

ABSTRACT

Chloroplast biotechnology has emerged as a promissory platform for the development of modified plants to express products aimed mainly at the pharmaceutical, agricultural, and energy industries. This technology's high value is due to its high capacity for the mass production of proteins. Moreover, the interest in chloroplasts has increased because of the possibility of expressing multiple genes in a single transformation event without the risk of epigenetic effects. Although this technology solves several problems caused by nuclear genetic engineering, such as turning plants into safe bio-factories, some issues must still be addressed in relation to the optimization of regulatory regions for efficient gene expression, cereal transformation, gene expression in non-green tissues, and low transformation efficiency. In this article, we provide information on the transformation of plastids and discuss the most recent achievements in chloroplast bioengineering and its impact on the biopharmaceutical and agricultural industries; we also discuss new tools that can be used to solve current challenges for their successful establishment in recalcitrant crops such as monocots.


Subject(s)
Transformation, Genetic , Biological Products , Chloroplasts , Crops, Agricultural , Biotechnology , Recombinant Proteins/biosynthesis , Plants, Genetically Modified
14.
Electron J Biotechnol ; 49: 42-49, Jan. 2021. tab, graf, ilus
Article in English | LILACS | ID: biblio-1291646

ABSTRACT

BACKGROUND: Late embryogenesis abundant (LEA) proteins were reported to be related to adversity stress and drought tolerance. Lea-3 from Arachis hypogaea L. (AhLea-3) was previously found to be related to salt tolerance according to the result of transcriptome profiling and digital gene expression analysis. So, AhLea-3 was cloned and the salt tolerance was validated by transgenic peanut plants. RESULTS: AhLea-3 was isolated from M34, a salt-resistant mutant of peanut, with its cDNA as the template. AhLea-3 contains one intron and two extrons, and the full-length cDNA sequence contains 303 bp. AhLea3 was ligated to pCAMBIA1301 to obtain the overexpression vector pCAMBIA1301-AhLea-3, which was then transferred into peanut variety Huayu23. The expression level of AhLea-3, as determined by qRTPCR analysis, was >10 times higher in transgenic than in non-transgenic plants. Five days after they were irrigated with 250 mM NaCl, the transgenic plants showed less severe leaf wilting, higher activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), and lower malonic dialdehyde content than non-transgenic plants. Relative to non-transgenic plants, the transgenic plants had a higher photosynthetic net rate, stomatal conductance, and transpiration rate, and a lower intercellular CO2 concentration after salt stress treatment (250 mM NaCl). CONCLUSIONS: These results indicate that overexpression of AhLea-3 increased the salt tolerance of transgenic peanut plants. AhLea-3 might become a useful gene resource for the variety breeding of salinity tolerance in peanut.


Subject(s)
Arachis/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Salt Tolerance , Arachis/genetics , Plant Proteins/isolation & purification , Transformation, Genetic
15.
Biol. Res ; 54: 6-6, 2021. ilus, graf, tab
Article in English | LILACS | ID: biblio-1505798

ABSTRACT

BACKGROUND: Mitochondria play a significant role in plant cytoplasmic male sterility (CMS). In our previous study, mitochondrial complex I genes, nad4, nad5, and nad7 showed polymorphisms between the transgenic CMS line M2BS and its wild type M2B. The sterility mechanism of the M2BS at cytological, physiological, biochemical, and molecular level is not clear. RESULTS: Cytological observation showed that the anthers were light yellow, fissured, invalid in KI-I2, and full of irregularly typical abortion pollen grains in M2BS. Transmission electron microscopic (TEM) observation revealed no nucleus and degraded mitochondria with obscure cristae in anther cells of M2BS. The results of staining for H2O2 presented a large number of electron dense precipitates (edp) in intercellular space of anther cells of M2BS at anthesis. Moreover, the anther respiration rate and complex I activity of M2BS were significantly lower than those of wild type M2B during pollen development. Furthermore, RNA editing results showed only nad7 presented partially edited at 534th nucleotides. The expression of nad5 and nad7 revealed significant differences between M2B and M2BS. CONCLUSIONS: Our data demonstrated that mitochondrial structural degradation and complex I deficiency might be associated with transgenic CMS of rice.


Subject(s)
Oryza/genetics , Electron Transport Complex I/genetics , Plant Infertility , Mitochondria/pathology , Plants, Genetically Modified , Gene Expression Regulation, Plant , Hydrogen Peroxide , Mitochondria/ultrastructure
16.
Braz. arch. biol. technol ; 64: e21200316, 2021. tab, graf
Article in English | LILACS | ID: biblio-1278451

ABSTRACT

Abstract To discover and isolate a glyphosate-resistant gene from Fragaria vesca through gene mining. An open reading frame (ORF) of 1563 bp encoding EPSPSwas amplified from Fragaria vesca (FvEPSPS). FvEPSPS (Genebank: XP004306932.1) encodes a polypeptide of 520 amino acids and it has hightly homologous with EPSPS from other plants. qRT-PCR analysis showed that the FvEPSPS was expressed extensively in all tissues including leaves, roots and stems, with higher expression in leaves. Furthermore, transgenic Arabidopsis Thaliana exhibited 10 mM glyphosate to resistance. Therefore, this research offers a new glyphosate-resistant gene for development of transgenic crops.


Subject(s)
Plants, Genetically Modified , Arabidopsis , Fragaria , Herbicides/adverse effects
17.
Braz. j. biol ; 81(2): 251-257, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1153347

ABSTRACT

Genetically modified plants are one of the tactics used in integrated pest management - IPM. There is great concern about the impact of these plants on non-target organisms. On the other hand, there is little information in the literature on the effects of transgenics (Bacillus thuringiensis) Bt on populations of phytophagous mites, and the physiological responses that this attack promotes on plants. The objective of this work was to evaluate the biology of the T. ludeni mite in Bt cotton, expressing the Cry1F and Cry1Ac proteins. To evaluate the behavior of food and oviposition preference of the T. ludeni with Bt cotton and isohybrid. Verify if the physiological stress caused by T. ludeni's attack is differentiated in Bt cotton. The mites were reared in Bt cotton and isohybrid, in a total of 40 replicates in the completely randomized design and the biological cycle was evaluated. The food preference and oviposition analysis were done with 10 replicates, with choice. The physiological stress was evaluated through chlorophyll fluorescence, under greenhouse conditions. The data of the T. ludeni biology were analyzed by Student's t-test, for food and oviposition preference the chi-square test was performed. Regression models were fitted for the fluorescence parameters. The model identity test was used to evaluate the differences between Bt and isohybrid treatments. Cry1F and Cry1Ac proteins have not affected the biology of T. ludeni. The photosynthetic parameters in Bt cotton plants were less influenced by T. ludeni infestation.


O uso de plantas geneticamente modificadas é uma das táticas utilizadas no manejo integrado de pragas - MIP. Observa-se grande preocupação com o impacto dessas plantas sobre organismos não alvos. Por outro lado, existe pouca informação na literatura sobre efeitos dos transgênicos (Bacillus thuringiensis) Bt em populações de ácaros fitófagos, e as respostas fisiológicas que esse ataque promove nas plantas. Objetivou-se com esse trabalho avaliar a biologia do ácaro T. ludeni em algodoeiro Bt, expressando as proteínas Cry1F e Cry1Ac. Avaliar se há comportamento de preferência alimentar e postura de T. ludeni em relação ao algodoeiro Bt e seu iso-híbrido. E verificar se o estresse fisiológico causado pelo ataque de T. ludeni é diferenciado em algodoeiro Bt. Os ácaros foram criados em algodoeiro Bt e iso-híbrido, em um total de 40 repetições no delineamento inteiramente casualizado, onde foi avaliado o ciclo biológico. A análise de preferência alimentar e de posturas foi feita com 10 repetições, com escolha. O estresse fisiológico foi avaliando através da fluorescência da clorofila, em casa de vegetação. Os dados da biologia de T. ludeni foram analisados pelo teste t Student, para preferência alimentar e postura foi realizado o teste qui-quadrado. Para os parâmetros da fluorescência, foram ajustados modelos de regressão. Para testar as diferenças entre Bt e iso-híbrido foi utilizado o teste de identidade de modelos. As proteínas Cry1F e Cry1Ac não afetaram a biologia de T. ludeni. Os parâmetros fotossintéticos em plantas de algodoeiro Bt foram menos influenciados pela infestação de T. ludeni.


Subject(s)
Animals , Female , Plants, Genetically Modified/genetics , Tetranychidae/genetics , Stress, Physiological , Bacterial Proteins/genetics , Gossypium/genetics , Endotoxins , Bacillus thuringiensis Toxins , Hemolysin Proteins/genetics , Larva
18.
Chinese Journal of Biotechnology ; (12): 2845-2855, 2021.
Article in Chinese | WPRIM | ID: wpr-887847

ABSTRACT

Production of biofuels such as ethanol from non-grain crops may contribute to alleviating the global energy crisis and reducing the potential threat to food security. Tobacco (Nicotiana tabacum) is a commercial crop with high biomass yield. Breeding of starch-rich tobacco plants may provide alternative raw materials for the production of fuel ethanol. We cloned the small subunit gene NtSSU of ADP-glucose pyrophosphorylase (NtAGPase), which controls starch biosynthesis in tobacco, and constructed a plant expression vector pCAMBIA1303-NtSSU. The NtSSU gene was overexpressed in tobacco upon Agrobacterium-mediated leaf disc transformation. Phenotypic analysis showed that overexpression of NtSSU gene promoted the accumulation of starch in tobacco leaves, and the content of starch in tobacco leaves increased from 17.5% to 41.7%. The growth rate and biomass yield of the transgenic tobacco with NtSSU gene were also significantly increased. The results revealed that overexpression of NtSSU gene could effectively redirect more photosynthesis carbon flux into starch biosynthesis pathway, which led to an increased biomass yield but did not generate negative effects on other agronomic traits. Therefore, NtSSU gene can be used as an excellent target gene in plant breeding to enrich starch accumulation in vegetative organs to develop new germplasm dedicated to fuel ethanol production.


Subject(s)
Biomass , Gene Expression Regulation, Plant , Plant Breeding , Plant Leaves/genetics , Plants, Genetically Modified/metabolism , Starch , Tobacco/metabolism
19.
Chinese Journal of Biotechnology ; (12): 4351-4362, 2021.
Article in Chinese | WPRIM | ID: wpr-921511

ABSTRACT

To explore the function of a heat shock transcription factor gene (HSFB1) and its promoter in Amorphophallus, a 1 365 bp DNA sequence was obtained by homologous cloning from Amorphophallus albus. The gene expression level of AaHSFB1 determined by qRT-PCR indicated that AaHSFB1 gene is more sensitive to heat stress. The expression level of AaHSFB1 in roots increased followed by a decrease upon heat treatment, and the highest expression level was observed after heat treatment for 1 h. The expression level of AaHSFB1 in leaves reached the highest after heat treatment for 12 h. The expression level in bulbs did not change greatly during the heat treatment. Subcellular localization analysis showed that AaHSFB1 protein was localized in the nucleus. A 1 509 bp DNA sequence which contains the AaHSFB1 promoter was obtained by FPNI-PCR method. Bioinformatics analysis showed that the promoter contained heat stress response elements HSE and a plurality of cis-acting elements related to plant development and stress response. A prAaHSFB1::GUS fusion expression vector was constructed to further analyze the function of AaHSFB1 promoter. The expression vector was transformed into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated method, and GUS staining analysis on transgenic plants after heat treatment was performed. The results showed that AaHSFB1 promoter had very high activity in the leaves. Therefore, we speculate that AaHSFB1 may play an important role in the stress resistance of A. albus, especially when encountering heat stress.


Subject(s)
Amorphophallus/metabolism , Arabidopsis/genetics , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
20.
Chinese Journal of Biotechnology ; (12): 4329-4341, 2021.
Article in Chinese | WPRIM | ID: wpr-921509

ABSTRACT

Dehydration-responsive element binding proteins (DREBs) are an important class of transcription factors related to plant stress tolerance. Ammopiptanthus mongolicus is an evergreen broadleaf shrub endemic to desert areas of northwest China, and it has a very high tolerance to harsh environments. In order to reveal the functions and mechanisms of the AmDREB1F gene from this species in enduring abiotic stresses, we performed subcellular localization test, expression pattern analysis, and stress tolerance evaluation of transgenic Arabidopsis harboring this gene. The protein encoded by AmDREB1F was localized in the nucleus. In laboratory-cultured A. mongolicus seedlings, the expression of AmDREB1F was induced significantly by cold and drought but very slightly by salt and heat stresses, and undetectable upon ABA treatment. In leaves of naturally growing shrubs in the wild, the expression levels of the AmDREB1F gene were much higher during the late autumn, winter and early spring than in other seasons. Moreover, the expression was abundant in roots and immature pods rather than other organs of the shrubs. Constitutive expression of AmDREB1F in Arabidopsis induced the expression of several DREB-regulated stress-responsive genes and improved the tolerance of transgenic lines to drought, high salinity and low temperature as well as oxidative stress. The constitutive expression also caused growth retardation of the transgenics, which could be eliminated by the application of gibberellin 3. Stress-inducible expression of AmDREB1F also enhanced the tolerance of transgenic Arabidopsis to all of the four stresses mentioned above, without affecting its growth and development. These results suggest that AmDREB1F gene may play positive regulatory roles in response to abiotic stresses through the ABA-independent signaling pathways.


Subject(s)
Arabidopsis/metabolism , Droughts , Ectopic Gene Expression , Fabaceae/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL